

The Code for Sustainable Homes Incorporating Code into local planning policy

Charlotte Hardy: Domestic Technical Consultant Sam Borley: BREEAM Technical Consultant

Delivered by

Overview

- Background on BRE and BREEAM
- The CSH overview
- The Future of the CSH
- Delivery of the CSH

Who we are - the BRE Group

What is **breedm** ?

- BRE Environmental Assessment Method
- Certification scheme
- Voluntary
- Independent
- Holistic
- Customer focused
- Issue based

- The world's longest established and most widely used environmental assessment method for buildings
 - Created in 1988 and launched in 1990
- Over 230,000 buildings certified
- Network of over 2,500 independent licensed assessors across the world

We make environmental assessment schemes for buildings

Building types covered

- Code for Sustainable Homes (CSH): new-build homes in England, Wales and NI
- **EcoHomes**: new-build homes in Scotland
- BREEAM for Domestic Refurbishments: domestic refurbishments in the UK
- **BREEAM**: All other non-domestic projects (new-build, major refurbishments, fit-out...), anywhere in the world
- **BREEAM Communities**: for new-build domestic or mixed developments of over 50 units, anywhere in the world

Drivers

Building Regulations

- Towards zero carbon from 2019 for all buildings
- UN Framework Convention on Climate Change & Kyoto Protocol
 - Legally binding commitments for the reduction of greenhouse gases

EU Renewable Energy Directive 15

- 15% of energy consumption should be from renewable sources by 2020

Climate Change Act 2008

 Places a legal obligation on Government to reduce carbon dioxide emissions by at least 80% by 2050 and 26% by 2020, against a 1990 baseline, with the trajectory defined by a system of five year carbon budgets

Planning System

Increasing numbers of local planning authorities specifying sustainability requirements within planning policy

BREEAM Categories

Management

Water

Health & Wellbeing

Materials

Waste

Transport

breglobal

Pollution

Outline of BREEAM Communities

Eight categories of sustainability assessment that cover:

- Environmental
- Social
- Economic

Initial Focus – Planning Application Stage of Development Management Process

Reflects local variations and requirements of the region

Enables developers to address, and planners to implement, planning policies and regulations with ease

Sustainability in Local Government Buildings

Bletchley Leisure Centre

"Achieving BREEAM Excellent was absolutely central to our requirements for the new leisure centre. This has provided a significant reduction in running costs and therefore Council subsidy, and is ultimately one of the key measures that has helped the Council to save over £3 million in revenue funding during a 15 year period." *Paul Sanders, Milton Keynes Council*

Ceredigion County Council Offices

"Our employees are proud of their new office with its sustainable credentials and excellent working environment. The building is significantly cheaper to run than the seven Georgian and Victorian buildings previously occupied in Aberystwyth. Following its success, Ceredigion County Council is giving greater emphasis to achieving high BREEAM ratings on future developments." *Martin Severs, Ceredigion County Council*

Overview

- Background on BRE and BREEAM
- The CSH overview
- The Future of the CSH
- Delivery of the CSH

Energy 🛯 Water 🝙 Materials 🖷 Surface Water Run-Off 📓 Waste 🗊 Pollution 🚔 Health and Wellbeing 🛬 Management 🔳 Ecology

Weighted categories

Issues

Categories	No. Issues	Example
Energy and CO2		
emissions	9	Drying Space
Water	2	Indoor Water Use
Materials	3	Environmental Impact of Materials
Surface Water Run-off	2	Flood Risk
Waste	3	Composting
Pollution	2	GWP of Insulants
Health and Well-being	4	Daylighting
Management	4	Considerate Constructors Scheme
Ecology	5	Ecological Value of Site
TOTAL:	34	-

Minimum standards

Categories	Flexibility
Energy Efficiency	Four levels of minimum standards one for each level of the Code (level 3-6)
Water Efficiency	Three levels of minimum standards each covering two levels of the Code
Materials	A single basic standard at Code entry level:
Surface Water Run Off	
Waste	
Pollution	Lifetime homes for Level 6
Health & Well-Being	
Management	
Ecology	

50 | Code for Sustainable Homes

Issue ID	Description	No. of Credits Available	Mandatory Elements
Ene 4	Drying Space	1	No

Aim

To promote a reduced energy means of drying clothes.

Assessment Criteria

Criteria	Credits
Where space and equipment are provided for drying clothes:	1
 For 1 – 2 bedroom dwellings, the drying equipment must be capable of holding 4m+ of drying line 	
 For 3+ bedroom dwellings, the drying equipment must be capable of holding 6m+ of drying line 	
The drying space (internal or external) must be secure	
Default Cases	
None	

How Scoring works in the Code

Total points score

Code Levels	Total Percentage Points out of 100 (equal to or greater than):
Level 1 (★)	36 Points
Level 2 (★★)	48 Points
Level 3 ($\star \star \star$)	57 Points
Level 4 ($\star \star \star$)	68 Points
Level 5 ($\star \star \star \star$)	84 Points
Level 6 ($\star \star \star \star \star$)	90 Points

CSH Pre-assessment estimator

- Gives assessors and their clients an early indication of possible credits
- Helps to map out CSH/BREEAM 'achievement strategy' and weigh-up different design solutions
- Is not audited or certified

CSH Design Stage Certificate – 'Interim'

Post Construction Stage

 'Final' Code Certificates can only be issued after the Post Construction Assessment is complete and passes quality assurance

breglobal

Certificate

- Certificate presents:
 - Details of the development
 - Overall rating and score
 - Breakdown of score by category
 - EPC CO₂ rating

RIBA Outline Plan of Work		BREEAM / Code building certification		Stages of BREEAM communities certification	
pre-agreement	PRE	Pre-agreement	BREEAM / Code		
proporation	A Appraisal		Pre-Assessment Stage		
preparation	В	Design Brief			BREEAM Communities Assessment and Certification
	с	Concept			
pre-agreement	D	Design Development			
	E	Technical Design		BREEAM / Code Design	
	F	Production Information		Stage Assessment	
pre-construction	G	Tender Documentation			
pre-agreement preparation design pre-construction construction use	н	Tender Action			
	J	Mobilisation			
construction	к	Construction to Practical Completion		BREEAM / Code Design Stage Interim Certification	
	L1	After Practical Completion		BREEAM / Code Post	
use	L2	Initial Occupation Period		Assessment and Certification	
	L3	Post Occupation Evaluation			

Fees

BRE fees for Code Assessments

- £37 per dwelling (Covers both DS and PCS)
- £370 minimum (per development/ ≤ 10 dwellings)
- This will be payable when the DS report is first submitted
- + Assessor fees determined independently
- Annual, assessor licence fee £375 (cost for assessor only).

Number of CSH Certifications up to December 2010 for UK

Ene 1 - Dwelling Emission Rate

- % Improvement DER over TER
- DER Dwelling Emission Rate
 - Estimated CO₂ emissions/m²
- TER Target Emission Rate
 - Maximum allowable CO₂ emissions/m²
- Defined by Building Regulations AD L1A 2010
- Calculated using SAP 2009

10 Credits

Ene 1 – Dwelling Emission Rate

% improvement of DER over TER	Credits	Mandatory Levels
\geq 8%	1	
\geq 16%	2	
≥ 25%	3	Level 4
≥ 36%	4	
≥47%	5	
≥ 5 9%	6	
≥72%	7	
≥ 85%	8	
≥100%	9	Level 5
Zero Net CO ₂ Emissions	10	Level 6

NB the tool will now award fractions of credits*

*using linear interpolation

Ene 2 – Fabric Energy Efficiency (FEE) 9 Credits

 Focuses on the inherent properties of dwelling

• kWh/m²/year

• From SAP FEE Worksheet

Ene 2 – Fabric Energy Efficiency

Dwelling Type		258	
Apartment Blocks, Mid-Terrace	End Terrace, Semi- Detached & Detached	358	
Fabric Energy Effic	ciency kWh/m²/year	Credits	Mandatory Levels
≤ 4 8	≤ 60	3	
≤ 45	\leq 55	4	
≤ 43	≤ 52	5	
≤ 41	≤ 4 9	6	
≤ 39	≤ 46	7	Levels 5 & 6
\leq 35	≤ 42	8	
≤ 32	≤ 38	9	

Wat 1 - Indoor Water Use

5 Credits

• Theoretical average water consumption, using normalised use patterns

• Measured in Litres / person / day

Wat 1 - Indoor Water Use

Water consumption (litres / person / day)	Credits	Mandatory Levels
≤120 l/p/day	1	Level 1 and 2
≤110 l/p/day	2	
≤105 l/p/day	3	Level 3 and 4
≤90 l/p/day	4	
≤80 l/p/day	5	Level 5 and 6

Proven Water Efficiency...

 Recent NHBC research confirms that the average water use for 'Eco' homes is 12% less than the 125 l/p/day target set by Building Regulations

Mat 1 - Environmental Impact of Materials

- Rates specifications based on environmental impact over life cycle
- Use Green Guide Online
- Simple to use guide
 - Elements
 - Specifications
 - A+ to E ratings

(E: Green Gu	ide: Green Guide 20	08 ratings - Win	dows Internet Explo	orer						
🕗 👻 hl	ttp://www.thegreenguide	org.uk/ggelement.js	p?buildingType=Housing	&category=78parent=08eleme	ntType=10028				4 X Live Search	1
Edit ⊻jew	Favorites Iools Help									
88 - 8	🙆 BRE - Research Project	; 🏉 BRE: G	reen Guide: Green 🗙	Code for Sustainable Hom	ies				🙆 • 📾 • 🖶 • 🛛	Page + 🕥 T <u>o</u> ols
		breg	lobal	THE	green guide t	o spec	IFICATION	57		
	ć	< Back to BRE	Green	Guide 2008 ratings						
		Home								
		Introduction to	The Bu	ilding type > Domestic						
		Green Guide		Category > Upper Floo	or Construction					
		Publications and	Ele	ment type > Upper Floor	Construction					
		was compiled How to use the	Green				Element number	Summary		
		Guide to Specifi	cation Chipboa	rd decking on galvanised :	teel joists		807280019	A		
		Register	Chipboa	rd decking on metal web i	nists		807280005	84-		
		Login	Chipboa	rd decking on timber batte	os on grouted beam and	d dense	807280033	B		
		Green Guide 20 Ratings	00 block flo	oring	ing on groated beam and	d dense	007200000			
		readings	Chipboa block flo	rd decking on timber batte oring	ns, grouted beam and a	ircrete_	807280002	A		
			Chipboa dense b	rd decking on timber batte lock flooring	ns, grouted beam and n	nedium	807280043	в		
			Chipboa	rd decking on timber batte sed concrete planks	ns, grouted hollow preci	ast_	807280048	С		
			Chipboa reinforce	rd decking on timber batte ad slab flooring	ns, grouted hollow prec	ast	807280047	E		
			Chipboa	rd decking on timber I jois	its		807280024	A+		
			Chipboa	rd decking on timber joists	L.		807280021	A+		
			OSB-2 d	lecking on galvanised stee	l joists		807280040	A±-		
			OSB-2 of flooring	ecking on timber battens,	grouted beam and aircre	ete block	807280032	A		
			OSB-2 c flooring	lecking on timber battens,	grouted beam and dens	e block	807280034	в		
			OSB-2 dense b	lecking on timber battens, lock flooring	grouted beam and medi	ium_	807280001	A		
			OSB-2 c prestres	lecking on timber battens, sed concrete planks	grouted hollow precast		807280050	в		
			058-2 4	larking on timber hattens	acouted hollow presect		807280040	<u> </u>		
		15 - 25 - 25 - 21		I man	I marine a	I.com	I C		Lø 👹 Internet	100%

Mat 1 - Environmental Impact of Materials

- Assessment covers:
 - Roof
 - External walls
 - Internal walls
 - Floors
 - Windows

- Mandatory Requirement
 - 3 out of 5 named elements will need to be rated <u>D</u> or above
 - 3 elements which are rated D will result in compliance with the mandatory requirement, but no credits will be awarded

Sur 1 - Criteria Overview

Mandatory requirements:

- 1 Peak rate of run off
- No greater than pre developed site
- 2 Volume of run off
- Additional volume entirely reduced
- Infiltration or other SuDS techniques non 'holding back' solutions
- 3 Designing for local drainage system failure

breglobal

Was 1 - Storage of non-recyclable waste & recyclable household waste

A suitable area of sufficient size to house the greatest volume of

EITHER

 All containers provided by the Local Authority (Refuse and Recycling)

OR

- The minimum capacity as calculated using BS 5906:2005
- All containers must be accessible to disabled people, particularly wheelchair users (see Checklist IDP)

What if we just do the minimum?

Overview

- Background on BRE and BREEAM
- The CSH overview
- The Future of the CSH
- Delivery of the CSH

The BRE Innovation Park

Current energy levels within Code

- Targets shown as a percentage of "Regulated" emissions compared to Part L 2010
- These are from heating, hot water, lighting, pumps and fans
- "Non-regulated" emissions from appliances and cooking are not included in Part L, but must be met for current CL6 – (net zero CO₂ emissions)
- These can add up to around 40% on top of SAP-regulated emissions

Definition of Zero Carbon - The Principle

Renewables should not be the first option – Fabric First...

- Fabric Energy Efficiency: Energy Demand for Space heating and cooling expressed in kWh/m²/year
- Required minimum performance standards will be:

Apartment block/ Mid Terrace	Semi Detach/ Detached/ End of Terrace
39 kWh/m ² /year	46 kWh/m ² /year

Minimum Carbon Compliance Standards

From 2016 the 'built performance' emissions from new homes should be required not to exceed the following limits: ¹

- 10 kg CO_{2(eq)}/m²/year for detached houses ^{2, 3}
- 11 kg CO_{2(eq)}/m²/year for other houses (semi-detached, terraced etc)
- 14 kg CO_{2(eq)}/m²/year for low rise apartment blocks.
 - 60% for detached houses
- Approx. percentage improvement on 2006 Part L is therefore:
- 56% for other houses
- 44% for low rise apartment blocks

No Longer 70% as first thought

- Limitations of the current definition for Step 2:
 - Not currently a standard for high rise apartment blocks, 4 storeys or more.
 - Figures are based on an as-built performance
 - Current standards look at designed performance – not a direct comparison
 - How will performance standards be demonstrated at Design Stage?

To be Announced...

- Allowable solutions secure a carbon saving away from the site.
- Likely to be community heating funds which will be managed by the Local Authority.

Recent announcement in the budget about ZC....

 The 'Plan for Growth' document which supported the budget statement (March 2011) claimed that emissions from 'zero carbon' homes will not take account of emissions related to cooking or appliances.

The definition of 'Zero Carbon' – Where will Code level 6 fit in?

 The nearest current equivalent to this suggested new level is Code level 5

Welcome to localism!

Note: BREEAM Requirements typically remain static as BREEAM is 'tightened' at every update

Portsmouth City Council (draft CS)		2010 (At adoption) CSH Level 4 BREEAM Very good	d	Jan 2012 CSH Level 5 BREEAM Excelle	ent		Jan 2015 CSH Level 6 BREEAM Excellen	t.	
Isle of Wight Council (draft CS)		2010 (At adoption for nor CSH Level 4 BREEAM Very goo	n-major developmer d	nts)	Jan 2013 (At adoption for CSH Level 5 BREEAM Very	non-major developmer good	its)	Jan 2016 (At adoption to development CSH Level 6 BREEAM Ext	ior non-major s) cellent
TAN 22 Wales Domestic		Sep 2009 CSH Level 3 + 6 Ene 1 credits All developments of 5 of more units	2010 Level 3 ne 1 credits velopments	2011 All developments Zero carbon				-	
HCA NAHP Programme (Inc. NI)	May 2008 CSH Level 3 condition of funding		Apr 2011 CSH Level 4 condition of fu	unding		2014 CSH Level 6 condition of fundin (assumed)	9		
Part L1a BRs		Oct 25% from	2010 decrease in TER 2006 baseline		4	Oct 2013 44% decrease in TER rom 2006 baseline			Oct 2016 Zero Carbon (approx 150% decrease)
	2008 2009	2010 201	11 20 ⁷	12 2	013	2014 201	15 20 ⁻	16	2017

The Merton Rule

- Developed by Merton Council in 2003
- Requires new development to generate at least 10% of their energy needs from on site renewables – (Ene 7 in CSH can be used to verify this)
- Has been adopted by several other Local Councils and the Mayor of London
- If all Local authorities across the country adopt the Merton rule it will trigger sufficient growth in the Industry to create Economies of Scale therefore reducing unit costs – More affordable for retrofitting...?

Mind the Merton (cont.)

TABLE 1

Main findings – costs and CO₂ savings

-	-				
Scenario	Initial 20-year CO ₂ saving (tonnes)	60-year CO ₂ saving (tonnes)	Immediate cost (£)	60-year cost (£)	Cost per tonne of CO ₂ saved (f)
Built-fabric improvements only	163 (10.9%)	488 (10.9%)	47 787	60 546	124
Renewables only	180 (12%)	540 (12%)	101 198	283 593	525
Built-fabric improvements and renewables combined	343 (22.9%)	1028 (22.9%)	148 984	344 138	335

Overview

- Background on BRE and BREEAM
- The CSH overview
- The Future of the CSH
- Delivery of the CSH

In the end, economics shape everything...

Please rank the following workshop topic from 1-8 in order of importance (1 being of little importance, 8 being an imperative for the day).

According to Galliford Try

Setting Targets Means Understanding Viability

According to Galliford Try

Setting Targets Means Understanding Viability

If residual land value is greater than the existing use value, the site will be developed

Protecting People, Property and the Planet

According to Galliford Try

Setting Targets Means Understanding Viability

With Affordable Housing

Protecting People, Property and the Planet

breqlobal

Example – Provided by DVS (commercial

arm of Valuation Office Agency)

Small brownfield site in the South West, Building Regulations 2010

Gross development value (GDV):

	sq ft	£ per sq ft	
Market:	21,500	£250	£5,375,000
Afford:	9,546	£172	£1,641,912
Total GDV:			£7,016,912
Less:			
Development costs			
Land (incl costs):			£659,200
Build costs:	31,046	£98	£3,042,508
5% contingency			£152,125
Fees @ 10%:			£304,251
Sales & Marketing:			£176,496
S106			£982,368
Finance @ 6.0% 19 months:			£264,824
Total development costs:			£5,581,772
=			
Drofite			C4 42E 440

Front:	<u>z 1,433,140</u>
Profit on Cost:	25.71%
Profit on GDV:	20.45%

Example – Provided by DVS

Small brownfield site in the South West, CSH L4 2010

Gross development value (GDV):

sq ft	£ per sq ft	
21,500	£250	£5,375,000
9,546	£172	£1,641,912
		£7,016,912
		£659 200
31 046	£106	£3 301 121
51,040	2100	£165 056
		£330 112
		£330,112 £176.496
		£982 368
		£362,300
		£204,024
		23,079,177
		£1.137.735
		19 35%
		16.21%
	sq ft 21,500 9,546 31,046	sq ft £ per sq ft 21,500 £250 9,546 £172 31,046 £106

Example – Provided by DVS

Small brownfield site in the With 10% 'green premium'	South We	est, CSH L4 2010	
Gross development value (GDV):		
	sq ft	£ per sq ft	
Market:	21,500	£275	£5,912,500
Afford:	9,546	£172	£1,641,912
Total GDV:			£7,554,412
Less:			
Development costs			
Land (incl costs):			£659,200
Build costs:	31,046	£106	£3,301,121
5% contingency			£165,056
Fees @ 10%:			£330,112
Sales & Marketing:			£176,496
S106			£1,057,618
Finance @ 6.0% 19 months:			£264,824
Total development costs:			£5,954,427
=			
Profit:			£1,599,985
Profit on Cost:			26.87%
Profit on GDV:			21.18%

Analysis of Examples – Provided by DVS (commercial arm of Valuation Office Agency)

	Build Regulation	Code 4	Code 4 & 10% Sales Premium
GDV	£7,016,912	£7,016,912	£7,554,412
Dev Costs	£5,581,772	£5,879,177	£5,954,427
Profit	£1,435,140	£1,137,735	£1,599,985
Profit on cost	25.71%	19.35%	26.87%
Profit on GDV	20.45%	16.21%	21.18%

Potential Limitations for a site

Figure 19	Factors in assessing the potential for sustainable building standards on strategic sites
• Existing lands	scape and topography features
The availabili	ty of a local district heat network
 An energy/hear of a local energy 	at load within or adjacent to the site that improves the viability rgy system
An existing or	proposed Energy Services Company
 Site provides technology (i. 	advantageous conditions for a low and zero carbon energy e. wind speed)
Higher densit	ies and mixed use developments
The soil type	of a site
Sites at risk o	f flooding
The provision	of site wide recycling facilities
A local author	rity collection system
Current ecolo	gical value of the site
Accessibility	of the site to a public transport network
Proximity to a	ccessible local amenities
 Other factors to be met on 	which would enable a sustainable building standards a strategic site.

Typical "Code Level Achievement" strategies...

Where attention is focused initially...

Where do we stand when we add in the credits awarded for the easy to achieve categories?

		Code 5 84 percent S	Code 6 90 pero S hortfall 20%	ent Shortfall 23
	Code 4 68 percent	Shortfall 15%	Sur Pol Was	Sur Pol Was
Code 3	Shortfall 8%	Sur	Eco	Eco
57 percent	Pol Was	Was	Man	Man
	Eco	Man	Неа	Hea
	Man	Hea	Wat	Wat
	Hea			
	Wat	Wat	Ene	Ene
	Ene	Ene		
the Planet				br

Where next?

Energy Credits (Ene 1)

Code level 4 for energy can be achieved without renewables

- Good Fabric efficiency needs to be considered
- Needs to be considered early on in the design stage!
- Does the contractor understand the requirements?

Protecting People, Property an

Ene 1: Fuel choice can make a big difference

Energy Credits: Other easy wins...

Now lets add in the remainder of the 'easy to achieve' energy credits...

Surplus

..Just!

Protecting People, Property and the Planet

Shortfall

Where next?

Major enhancement of Ecology of site

 Relatively easy out of the remaining credits

Materials

 Potential 1 or 2% of score for doing the minimum

- Going beyond this could get you up to the full 7.2% of credits but is difficult to achieve
- Responsible sourcing (Mat 2/Mat3) is only worth pursuing where a large amount of Tier 1 materials (e.g. FSC Timber and recycled components)
- Lots of paper work! (or is it?)

Where next?

<image>

Water

- Unless going for higher levels of the CSH ignore?
- Only potential 4% of credits beyond CL3 mandatory
- CL5 & 6 may need a combination of greywater and rainwater recycling for flats

Sound

 Very difficult to achieve 8 dB improvement over minimum standards – High Risk

Add in the difficult, yet possible, credits...

Protecting People, Property and the Planet

..Just!

Surplus

Code homes are 'the new normal'

Illingworth Estate, Halifax – Level 3

Some of the first Code homes in the country

For Pennine Housing 2000 built by Bramall Construction Ltd

Code homes are 'the new normal'

 Mid Street, Nuffield in Surrey by Osborne for the Raven Housing Trust – Level 5

Includes photovoltaic panels and rainwater harvesting

Photographs: Jeannette Henderson and Geoffrey Osborne Ltd

According to Galliford Try

Use of Renewable systems for CSH Level 6

Notes

TRUE Zero Carbon can only be achieved by utilising a Biomass system All other routes fail at this time

CSH Level 6 Solutions (140% Better) - True Zero Carbon

Protecting People, Property and the Planet

Phew!

Allowable Solutions

Notes

There are multiple solutions for achieving the 70% CO2 reductions Allowable Solutions play an important part in achieving CSH level 6 and GTR can deliver these The CHP system achieves the 70% reduction with no other renewables

CSH Level 6 Solutions (140% Better) - Net Zero Carbon

A final thought...

"98% of the talk is about 2% of the problem"

BREEAM for Domestic Refurbishment

BREEAM for Domestic Refurbishment

- National certification scheme for refurbishment
- Provides a method for supporting better design by measuring the outcomes delivered giving confidence to the consumer

Key issues it will promote

- Moving towards an 80% reduction in CO₂
- Impacts on overheating and health
- Flood resilience
- Embodied impacts of materials
- Recycling of refurbishment waste
- Water efficiency
- Health, security and fire
- Good project management and design

7.26 In order to ensure high standards and contribute locally to the London Plan's CO₂ reduction target, Croydon's minimum sustainability standards (as informed by evidence base) for new build and retrofitted developments are as follows:

- New build residential developments should be built to Code for Sustainable Homes Level 4
- New build non-residential development over 500sqm should be built to BREEAM 'Excellent'
- Conversion and refurbishment of existing residential buildings will be expected to meet high standards of the forthcoming 'BREEAM Domestic Refurbishment standard'. Extensions to residential buildings will be expected to improve the overall energy and water efficiency of the existing building (the exact level will be set out in the Development Management DPD, after publication of the 'BREEAM Domestic Refurbishment' standard and following further analysis)
- Major refurbishment of existing non-residential buildings or conversions greater than 500m2 floor space should achieve BREEAM 'Very Good' standard

Why BREEAM ?

- Allows focused goals for sustainability to be set according to the development
- A uniform and consistent standard by which to specify sustainability into communities
- Aims to encourage an aura of partnership between the local planning authority and developers to work together towards realistic goals in relation to sustainable construction

Development location and type

- A number of area types struggle with meeting some aspects of sustainability requirement e.g. transport provision, renewable etc.
- A number of councils have varied their minimum sustainability requirements according to the development location, eg:
 - Urban extensions
 - Greenfield sites
 - Town centre sites
 - or
 - Unit numbers
 - Housing type
 - Size of development

Area-specific requirements may be set out in Area Action Plans

Case Study – Milton Keynes

Policy CS 14

Sustainable Construction

Developments of over 5 dwellings or 1,000 sq m of non-residential floorspace will be expected to achieve at least the following standards, or any new standards set out in a future DPD, unless the Local Planning Authority is satisfied that the application demonstrates the requirement would not be technically or financially viable.

	Area	Older Town Centres ⁽⁹⁹⁾	City estates, including CMK ⁽¹⁰⁰⁾	Strategic Development Areas	Rural Area ⁽¹⁰¹⁾	Conversion or alteration of existing buildings
A	Code for Sustainable Homes	Code Level 4	Code Level 4	Code Level 4	Code Level 4	EcoHomes Very Good
	BREEAM	Very good	Excellent	Excellent	Very good	Very good
В	Minimum carbon dioxide reduction through renewable energy and/or low carbon technologies					
		10%	20%	20%	10%	10%
To wil	achieve the Cou	uncil's objective make a contrib	of carbon neutral	lity, all developme Iton Keynes Carbo	ents over 5 dwe on Offset Fund.	ellings or 1,000 sq m

Setting standards ahead of national policy

 National planning policy allows LPAs to set requirements for buildinglevel sustainability exceeding the statutory minima of the Building Regulations.

All new non-residential developments will be completed to a Building Research Establishment Environmental Assessment Method (BREEAM) of 'very good' up to 2013 and thereafter a minimum rating of 'excellent'.

Stockton on Tees Borough Council, Core Strategy Policy 3 (CS3) – Sustainable Living and Climate Change

Case Study – North Northamptonshire

 "Residential units to be delivered 2008-2012 will meet the Code for Sustainable Homes (CSH) Level 3 as a minimum; those delivered 2013-2015 will meet the CSH Code [sic] Level 4 as a minimum; and those delivered from 2016 onwards will meet the CSH Code [sic] Level 6 as a minimum."

> North Northamptonshire Council, Core Strategy Policy 14: Energy Efficiency and Sustainable Construction

Addressing specific issues

 A number of councils are choosing to address local sustainability issues through the use of specific credits in addition to, or instead of an overall rating

 As when setting overall ratings, any policy requiring certain levels of performance must be justified in the evidence base

Water efficiency

- Policy DC 5 Energy and Waster Efficiency in New Buildings
 - All new residential developments will be expected to reduce their dwelling emission rate by at least 25% and reduce their water consumption rate to at most 105 lpppd, consistent with Level 3 of the Code for Sustainable Homes. By 2016, dwelling emission rates and water consumption rates consistent with Code Level 6 will be expected in new homes.
 - Non-residential developments will be expected to reduce their building emission rate and improve their water efficiency consistent with the BREEAM Good rating for that type of development. By 2016, building emission rates and water efficiency will be expected to meet the BREEAM Excellent rating for new non residential development

Castle Point Borough Council Submission Core Strategy

Sustainability through Planning: 2011

2nd June and 14th July 2011, BRE Global, Watford

This series of conferences is aimed at: •Disseminating information on specification of BREEAM and the Code for Sustainable Homes as tools to drive increased environmental standards through the planning system

•The sharing of information experiences and best practice between Local Government attendees

•Reviewing and discussing the successes and pitfalls of specifying sustainability standards in the planning system.

For more information: Samantha Borley BREEAM@bre.co.uk + 44 (0) 1923 664462

Further information from BRE

• BREEAM Planning Awareness Days

- Can be tailored to specific needs
- Just need to get a group of people together!
- Technical Training Courses (CSH and/or BREEAM)
 - Local Planning Authorities get 25% DISCOUNT
 - Just quote Discount Code: LPA2011
- New starter at BRE Planning Expert

Contacts

- BREEAM at BRE Global
- Website: <u>www.breeam.org</u>
- Email: <u>hardyc@bre.co.uk</u> or <u>borleys@bre.co.uk</u>
- Phone : 01923 664462
- Post : BRE Global, Garston, Watford, WD25 9XX

