A Guide to District Heating Schemes

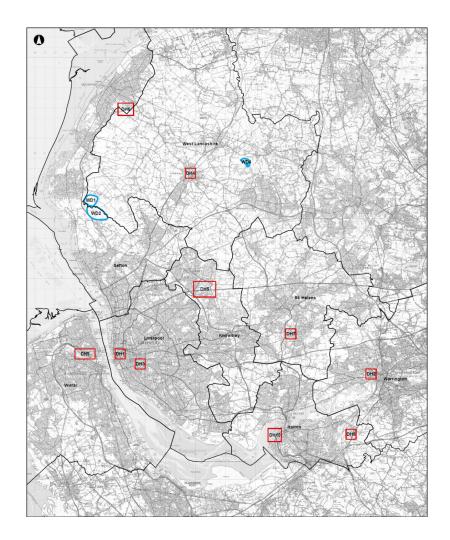
Planner Capacity Building Project

4 July 2011

- Inform how DPD policies and allocations can be prepared
- Understand the district heating:
 - Technical feasibility
 - Financial viability
 - Barriers / constraints
 - Deliverability
- Ownership of certain aspects in relation to planning and development process

Context: Planning

- National policy in a state of some transition
- New PPS1 Supplement, expected with. stronger and more direct guidance on how climate change should be addressed in planning policy document
- CHP / district heating is a key part of the carbon reduction agenda


Planning shapes the places where people live and work and the country we live in. It plays a key role in supporting the Government's wider social, environmental and economic objectives and for sustainable communities.

⁴ Planning policy: Keeping track of a moving target

- LDDs have significant role to play to deliver national commitments to carbon reduction
- Safeguarding areas for development of renewable energy and associated infrastructure
- Identifying opportunities for district heating is key

⁵ Planning policy: Making sure your plans provide certainty

- Evidence bases: Local Development Documents must contain a 'reasoned justification' for policies and allocations
- Sustainability Appraisal: SAs often fail to address climate change related issues adequately
- *Compliance with national policy:* DPD are expected to consistent with national policy
- Deliverability and flexibility: Key to adoption of targets and identification of significant energy infrastructure projects

May 2011 Legal Frameworks for Sustainable Community Infrastructure

An Interim Report from a UK-GBC Task Group in conjunction with the Zero Carbon Hub

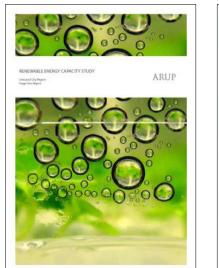
CAMPAIGN FOR A SUSTAINABLE BUILT ENVIRONMENT

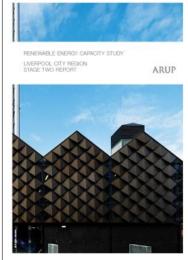
CLASP.

Context: Efficient energy generation

- CHP plant that does not 'dump' heat into the atmosphere
- Dumping heat reduces the operational efficiency of CHP plant
- "Good quality CHP" is defined in CHPA quality indexing system

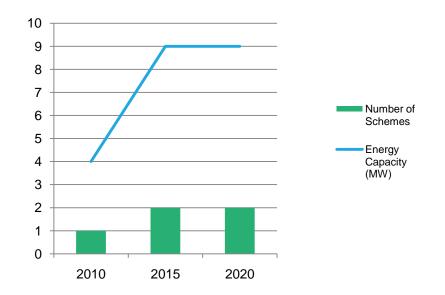
- Introduction of the Energy Efficiency Directive (EED)
- Replaces the Cogeneration Directive
- Promotes greater efficiency in energy generation
- Identifies district heating as a the default option
- Ideal fit for Liverpool City Region work undertaken to date





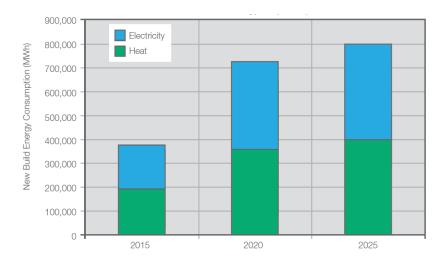
Context: The City Region

- Stage 1: Capacity
- Stage 2: Strategic opportunities
- Stage 3: Identification of mechanisms for delivering opportunities
- Stage 4: SEAP coordinate all energy issues and attract funding / investment

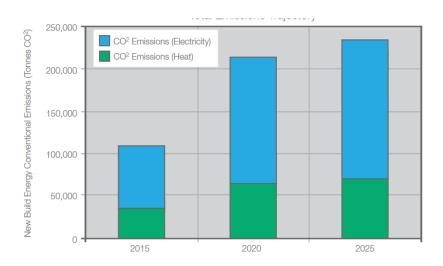


11 Liverpool City Region : The Journey So Far

- As at 2009 targets identified:
 - A total of 3 schemes were required generating 9MW by 2020
 - One scheme had been delivered (Mossborough Hall Farm) with capacity of 0.3MW
 - 4 planning applications submitted that could generate up to 27MW.
 - EfW accounted for 5 applications generating over 400MW
- 2010 study identified 14MW of biomass heat capacity in Merseyside
- Stage 2 report identifies 23.2 MW of CHP capacity from 8 Priority Zones



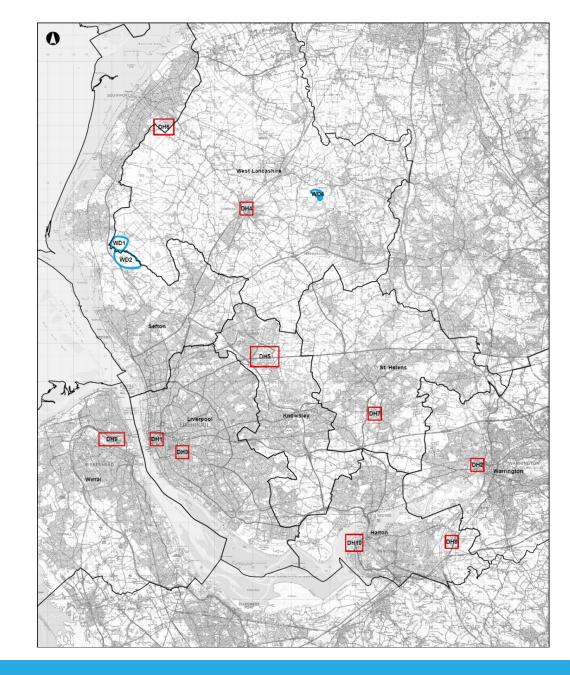
CLASP.


NUR

¹² Liverpool City Region : The Journey So Far

- Understanding of net energy demand and carbon emissions from growth
- Growth projections used to inform analysis of heat loads

Total Energy Trajectory

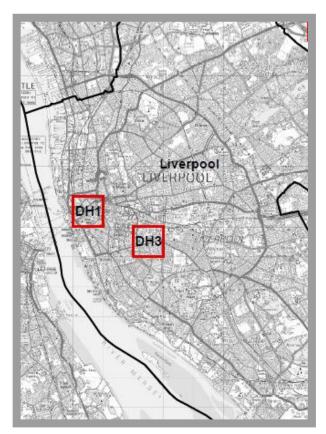

NUR

CLASP.

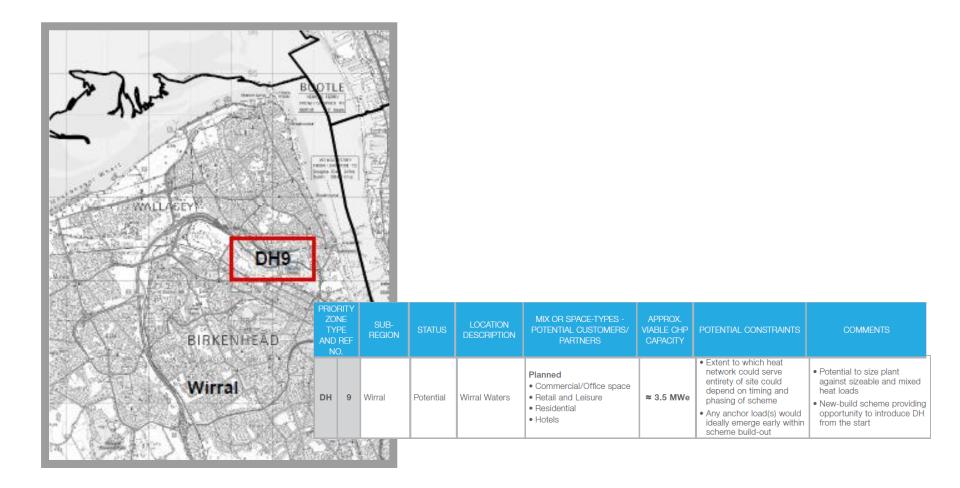
ARUP

Total Emissions Trajectory

- 10 District Heating priority Zones identified (27.8MW)
- 8 Priority Zones in Merseyside (22.3 MW)


14 Liverpool City Region : Strategic Opportunities

0 5 2								
6-3	PRIORITY ZONE TYPE AND REF NO.	SUB- REGION	STATUS	LOCATION DESCRIPTION	MIX OR SPACE-TYPES - POTENTIAL CUSTOMERS/ PARTNERS	APPROX. VIABLE CHP CAPACITY	POTENTIAL CONSTRAINTS	COMMENTS
CH49	DH 5	Knowsley	Emerging	Knowsley Business Park & South of Industrial Park	Existing • Commercial buildings • Light Industry Emerging • New employment land build-out • Energos energy from waste-plant	≈ 9 MWe (proposed by Energos)	 Potential requirement to cross East Lancashire road to access emerging Industrial Park load centres 	 Significant benefit offered by the commitment of Energos to install generation plant Heat availability not necessarily limited by emergence of related demands
14								

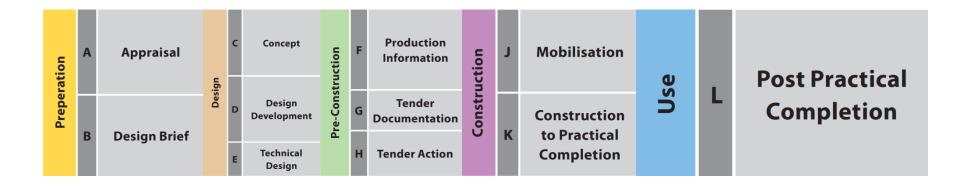


	NE PE REF	SUB- REGION	STATUS	LOCATION DESCRIPTION			POTENTIAL CONSTRAINTS	COMMENTS
DH	1	Liverpool	Existing	City centre area to West of Lime Street station and East of Prince's Dock	Commercial buildings Retail (shopping centres) Hotels Town Hall Law Courts and prisons Leisure facilities Residential buildings (flats)	≈ 3 MWe	 Likely costs of pipework installation in dense urban area Mix of land ownership Built heritage Air quality 	 Any CHP capacity will depend heavily on take-up within identified area SHLAA plans feature new build-out areas in close proximity to priority zone Need to identify potential energy centre sites
DH	3	Liverpool	Existing	Royal Liverpool Hospital & University of Liverpool	HospitalUniversity Campus	≈ 3.5 MWe	Requirement to cross Lime Street rail cutting to link to South of University Campus	 Royal Liverpool Hospital represents key anchor load

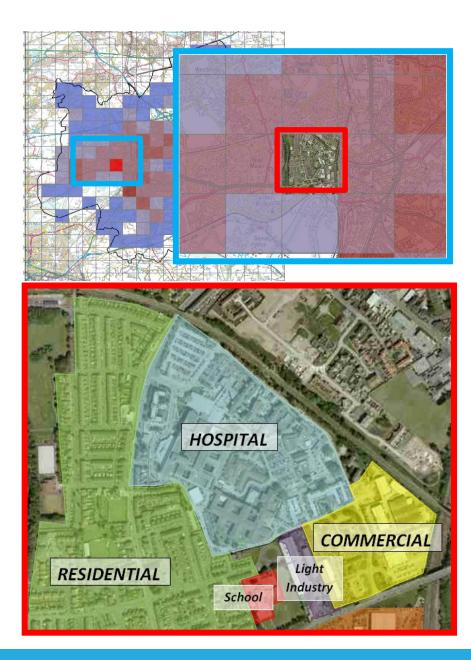
	PRIORITY ZONE TYPE AND REF NO.	STATUS	LOCATION DESCRIPTION	MIX OR SPACE-TYPES - POTENTIAL CUSTOMERS/ PARTNERS	APPROX. VIABLE CHP CAPACITY	POTENTIAL CONSTRAINTS	COMMENTS
DH5	DH 5 Knowsley	Emerging	Knowsley Business Park & South of Industrial Park	Existing • Commercial buildings • Light Industry Emerging • New employment land build-out • Energos energy from waste-plant	≈ 9 MWe (proposed by Energos)	 Potential requirement to cross East Lancashire road to access emerging Industrial Park load centres 	 Significant benefit offered by the commitment of Energos to install generation plant Heat availability not necessarily limited by emergence of related demands
Knowsley	X						

18 Strategic Opportunities: Knowsley

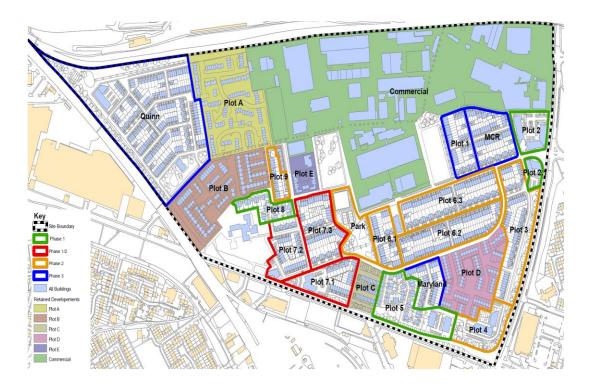
WIDNES HAUTON BUINCORD		レアンが一ていたい		н С					
\sim	PRIOF ZON TYF AND NC	NE PE REF	SUB- REGION	STATUS	LOCATION DESCRIPTION	MIX OR SPACE-TYPES - POTENTIAL CUSTOMERS/ PARTNERS	APPROX. VIABLE CHP CAPACITY	POTENTIAL CONSTRAINTS	COMMENTS
and the second s	DH	8	Halton	Emerging	Green-field area in Daresbury to West of A56	Existing • Business Park • Science Park Emerging • New employment land built-out • New residential	≈ 0.6 MWe	 Planned build-out area is relatively large at approx 2km in length 	 Existing load centres are at either end of planned development area, with feasibility of connection dependent upon new-build elements and precise types New-build scheme providing opportunity to introduce DH from the start
	DH	10	Halton	Potential	Runcorn Docks	Planned • Large residential area • Likely requirement for complimentary non-residential spaces	≈ 0.2-0.7 MWe (based solely on residential build-out of between 1,200-4,000 homes)	 Pure residential would not provide suitable mix to maximise plant size 	Scheme at this scale is likely to require provision of associated additional Community, Commercial and Retail spaces New-build scheme providing opportunity to introduce DH from the start



Stage 1: Analysis of areas, sites and buildings

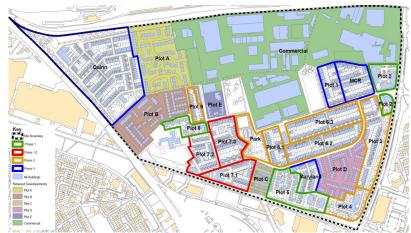

RIBA J

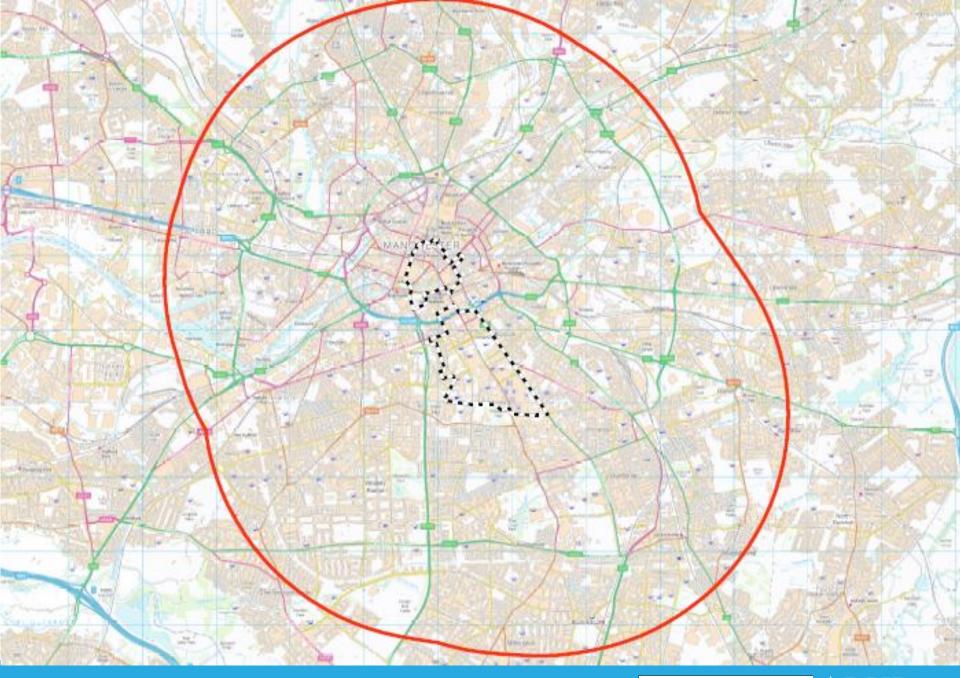
Understanding the development process


- Heat density mapping work provides areas of high heat demand at a 1km2 resolution
- Subsequent drill-down of identified sites allows specific load centres and space-types to be determined
- Key parameters for heat network suitability are tested:
 - presence of anchor load(s)
 - *mix of space-types*
 - distance between loads
 - local geography/potential challenges to pipework routing

²² Liverpool City Region : Strategic Opportunities

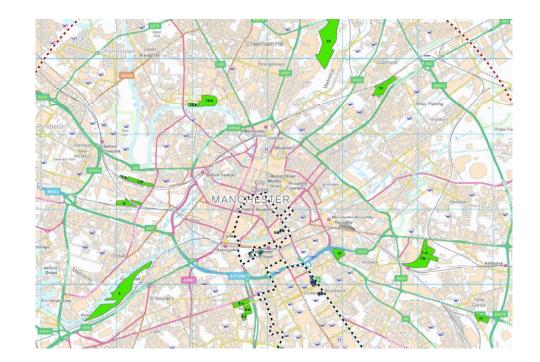
- Scale, mix, type , density and phasing of development
- Categorise building standards to be achieved (CfSH / BREEAM)
- Present proposed development details in tabular and spatial formats




NUEP

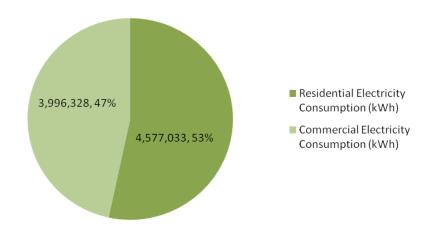
CLASP. ARUP

- Understanding areas of change
- Size, mix, type and end users of development
- Phasing
 - Dispersal / fragmentation
 - Certainty of land coming forward
- Obstacles and barriers between the building and the district heating network
- Building heat peak demand
- Compatibility of the building's heating system
- Capacity to locate plant and plant capacity

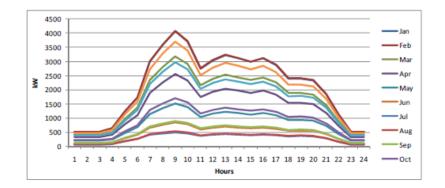


²⁵ Cross boundary issues; Connecting networks

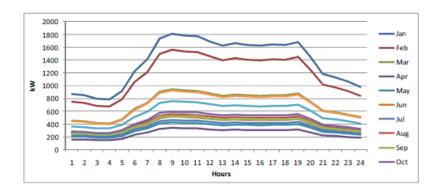
- Overall land area
- Proximity of the site to demand locations
- Vehicular access to the site
- Availability of utilities on/in proximity to the site
- Ability to erect buildings to house plant, with necessary permits and consents
- Ground conditions including contamination and presence of water



Stage 2: Energy Consumption & Profiling


- Types of energy:
 - Grid Electricity
 - Natural Gas
 - Renewables
- Assess plots by development type, size and building standard
- Regulated / unregulated energy

	Energy Consumption		Cost	
Utility	kWh/year	%	£/year	%
Electricity	8,600,000	44%	£930,200	73%
Gas	11,100,000	56%	£338,100	27%
Total Energy	19,700,0000		£1,268,300	

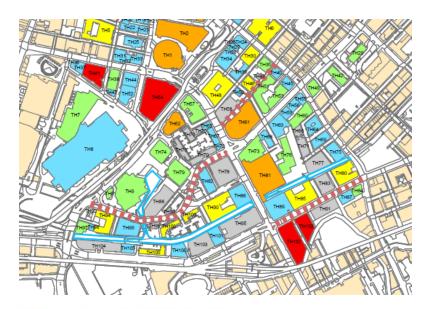


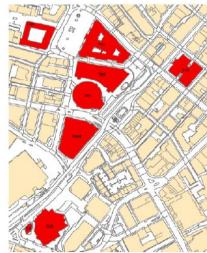
- Understanding the nature of energy demand ie, electricity and heat demand
- Development of profiles:
 - Total energy consumption
 - Total demand profile
 - Plot / individual building profiling
 - Assessment across the year
- Profiles used to identify energy peak requirements.
- Provide indication of size of plant needed to meet estimated demand

Heat Demand Profile of a Town Hall Complex

NUEP

ARUP


CLASP.


Heat Demand Profile of a Hotel

Assessing District Heat Options

- First step towards to detailed design of CHP / District Heating
- Identifying sites and buildings and building users
- Significant stakeholders engagement required
- Collection of detailed metered energy information
- Accuracy of data is very important to understand business case

Ref	Heat Consumption (kWh/year)	Electricity Consumption (kWh/year)
TH1	5 280 0/1	4,284,089
TH2	5,280,061	3,072,061
TH3	4,611,399	1,711,968
TH4	1,450,372	1,154,767
TH6	1,776,281	2,479,697
TH9	1,202,888	2,271,131
TH54	4,947,097	4,278,734

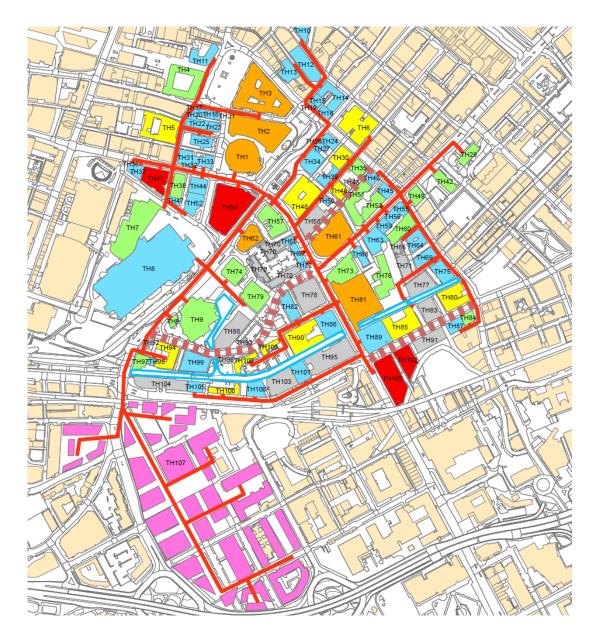
CLASP.

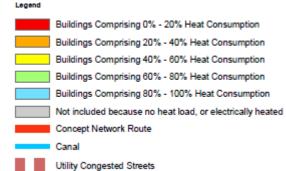
ARUP

Utility Congested Streets

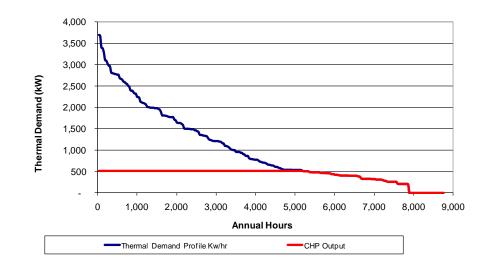
- Canal
- Buildings Comprising 0% 20% Heat Consumption
- Buildings Comprising 20% 40% Heat Consumption
- Buildings Comprising 40% 60% Heat Consumption
- Buildings Comprising 60% 80% Heat Consumption
- Buildings Comprising 80% 100% Heat Consumption
- Not included because no heat load, or electrically heated

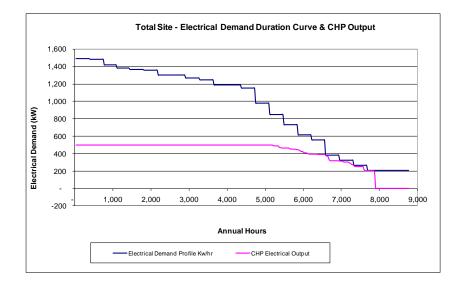
OS_Manchester


<all other values>


THEME

Buildings

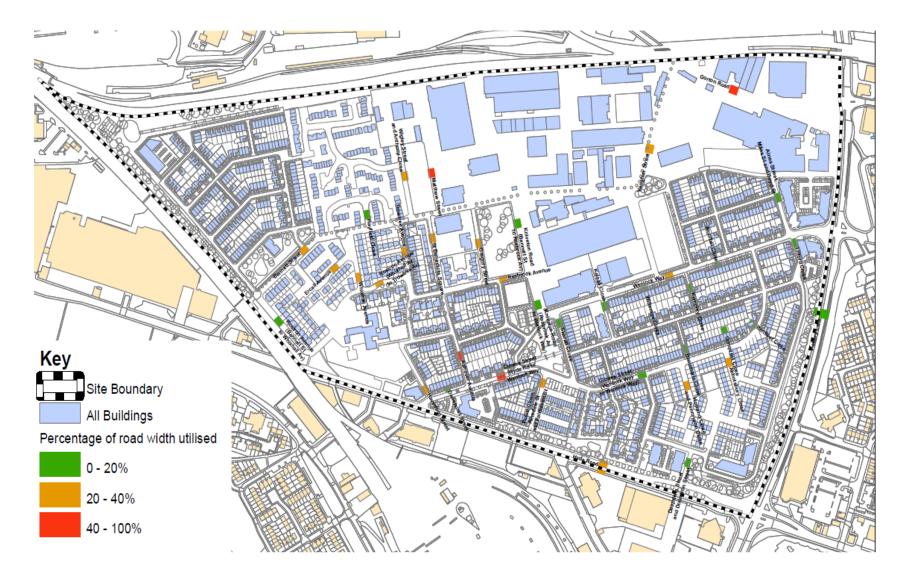




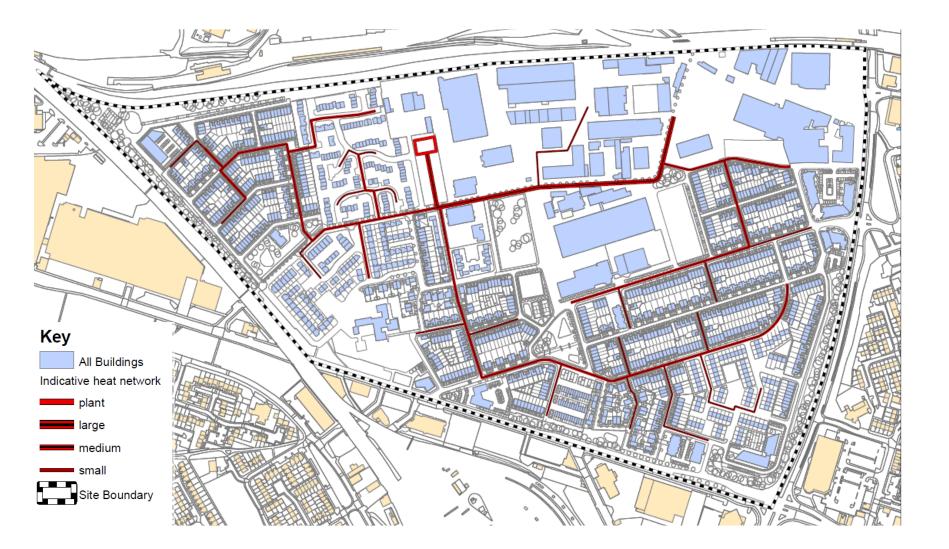
- Heat and electricity duration curves key to plant sizing.
- Implications on land requirement and location of plant.

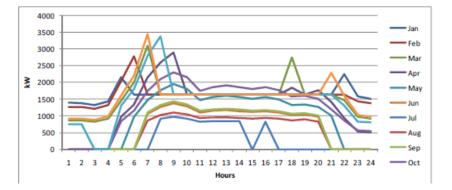
CLASP.

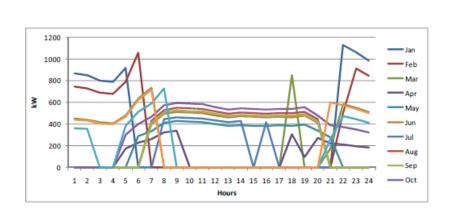
ARUP



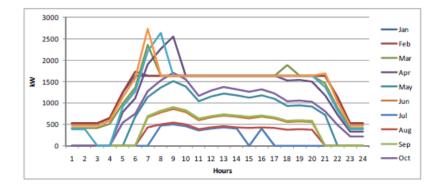
- **Option 1:** A combined heat and power (CHP) plant to produce both heat and electricity (to national grid)
- **Option 2:** A CHP plant that produces electricity directly to the end users through a dedicated, and privately owned, wire.
- **Option 3:** A biomass boiler plant. This option produces heat only.

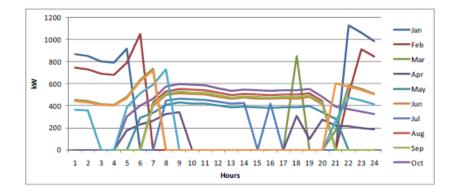






37 Planning for networks




Profile of how the CHP and thermal store deliver heat to the buildings opposite:

Graph shows the remaining available heat after the Council use what they can.

This graph shows much of the heat generated by the CHP is used by the Town Hall complex.

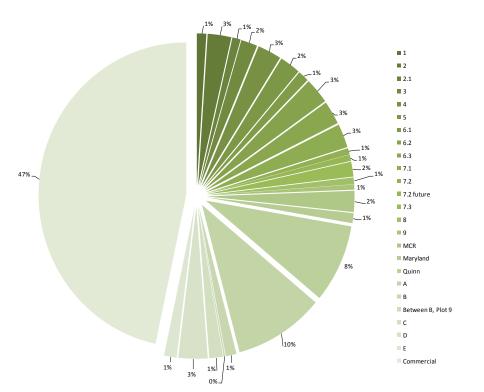
Graph shows that all the remaining available heat can be used by the hotel according to their demand profile. This is due to how the CHP is operating in accordance to the combined heat demand of all the buildings connected. In the model, no surplus heat is generated by the CHP.

Stage 4: Calculating Carbon



- National Calculation Methodology - Standard Assessment Procedure (SAP)
- Other sources DEFRA / Carbon Trust

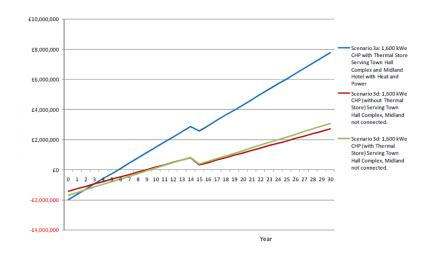
Guidance on how to measure and report your greenhouse gas emissions



				Scope 1			
Converting fuel types by	unit mass			CO ₂	CH4	N ₂ O	Total Direct GHG
Fuel Type	Amount used per year	Units	×	kg CO ₂ per unit		kg CO ₂ e per unit	kg CO2e per unit
Aviation Spirit		tonnes	x	3127.7	33.2	31.0	3191.
Aviation Turbine Fuel ¹		tonnes	×	3149.7	1.6	31.0	3182.2
Biofuels				See Ann	ex 9		
Burning Oil		tonnes	×	3149.7	6.7	8.6	3164.1
CNG ²		tonnes	×	2712.2	4.0	1.6	2717/
Coal (industrial) ³		tonnes	x	2295.3	1.8	39.4	2336
Coal (electricity generation)*		tonnes	×	2251.2	0.4	19.5	2271.
Coal (domestic) ⁵		tonnes	x	2506.3	329.7	45.5	2881.
Coking Coal		tonnes	×	2986.5	29.1	70.6	3086.
Diesel		tonnes	×	3164.3	1.8	35.0	3201.
Fuel Oil 6		tonnes	x	3205.5	2.6	11.6	3219.
Gas Oil 7		tonnes	×	3190.0	3.2	290.3	3483.
LNG ⁴		tonnes	x	2712.2	4.0	1.6	2717.
Lubricants		tonnes	×	3171.1	1.9	8.5	3181)
Naphtha		tonnes	×	3131.3	2.7	8.0	3142.
Other Petroleum Gas		tonnes	x	2894.0	3.3	65.7	2963.
Petrol		tonnes	×	3135.0	6.3	21.3	3162
Petroleum Coke		tonnes	×	3193.8	2.3	74.5	3270.
Wood		See Annex 9					
Total							

ARUP

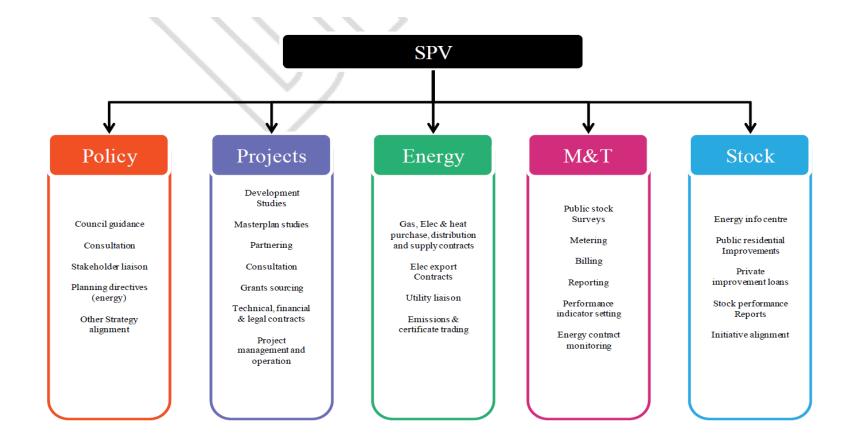
- Uses calculations for electricity and thermal demand.
- Two ways of calculating for developments:
 - Based on energy efficiency standard of building only. CO₂ produced through the conversion of fuel to electricity and heat
 - Taking full account of building standards and the 'offsetting' through energy infrastructure that will be required to meet standards
- Assess at individual plots levels in addition to overall development


CLASP.

Stage 5: Deliverability and Viability

- Simple Payback
- Net Present Value
- Internal Rate of Return
- Other measures:
 - Discount factor
 - Cost of connecting buildings to the heat network
 - Cost of the heat network
 - Biomass and Gas Fuel Price
 - Electricity price

Economic Viability Ranking	Scenario	CHP Capacity (kWe)	Capital Cost (£)	Simple Annual Cash Flow (£/year)	Simple Payback (years)
1	Scenario 3a with thermal storage	1,600	£1,954,000	£293,000	6.7
2	Scenario 3b with thermal storage	1,600	£1,954,000	£183,000	10.7
3	Scenario 3a without thermal storage	1,600	£1,823,000	£146,000	12.5
4	Scenario 2 with thermal storage	2,000	£3,632,000	£290,000	12.5
5	Scenario 3b without thermal storage	1,600	£1,823,000	£138,000	13.2
6	Scenario 1a with thermal storage	460	£1,142,000	£80,000	14.3
7	Scenario 1b with thermal storage	460	£1,142,000	£77,000	14.7


NUEP

ARUP

CLASP.

Connection costs	Cost of heat network	Fuel Costs
Obstacles and barriers between the building and the district heating network	Extension of the district heating network	Market value Length of contract
Compatibility of the building's heating system with the district heating heat supply (temperatures, pressure)	Obstacles and barriers between the buildings and the district heating network	Quantity
Space available in the plant room	Heat peak demand	Operator credit risk
Accessibility to the plant room in the building	Construction risk	Recourse limitations

