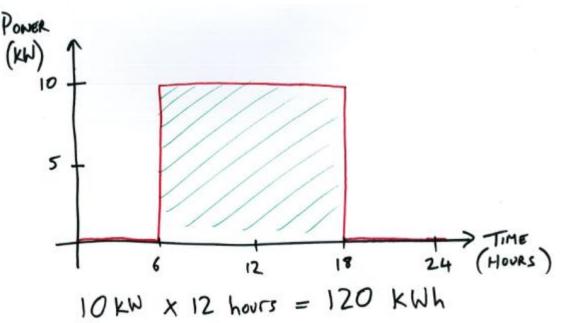


Individual Wind Turbines

Tim Kay AECOM


Delivered by:

Energy, power and carbon

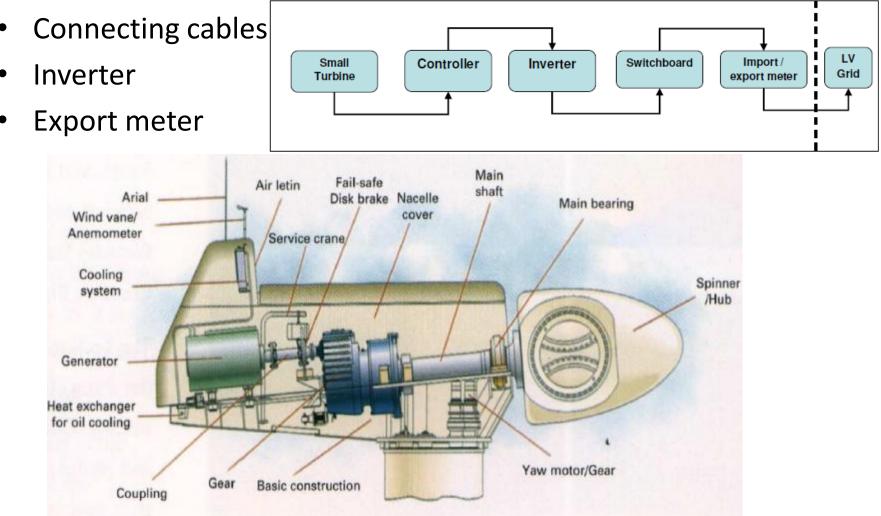
- Energy kWh, MWh, GWh
 - (plus kJ, MJ, GJ, cal, BTU, therm, etc...)
- Power kW, MW, GW
- Carbon kg, tonnes, Mt
 - (Depends on fuel type used/offset)
- Money £!
 - Depends on fuel type used/offset & export tariffs

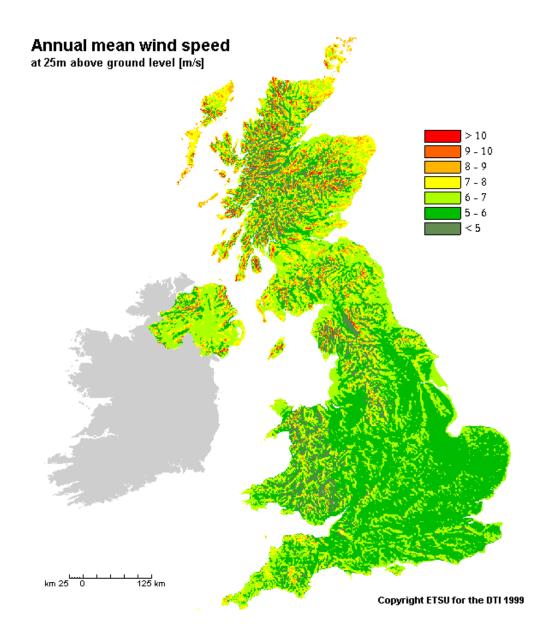
The scale of generation

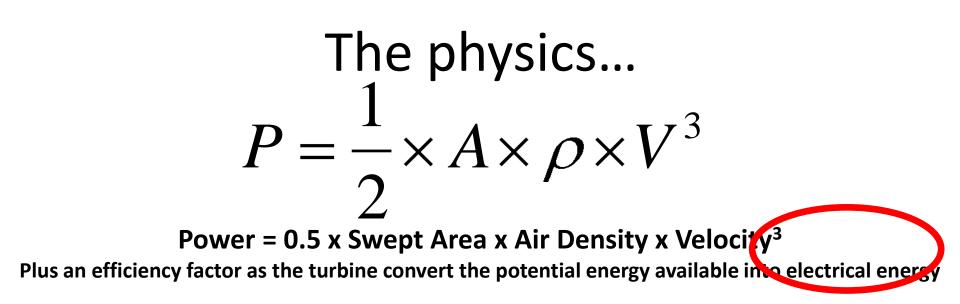
- Domestic micro wind
 - 1kW
 - £2,000
 - 0.1 tonnes CO₂ per annum
- Small/medium wind
 - 25kW
 - £75,000
 - 12 tonnes CO₂ per annum
- Large wind
 - 2.3MW
 - £2,200,000
 - 3,300 tonnes CO₂ per annum

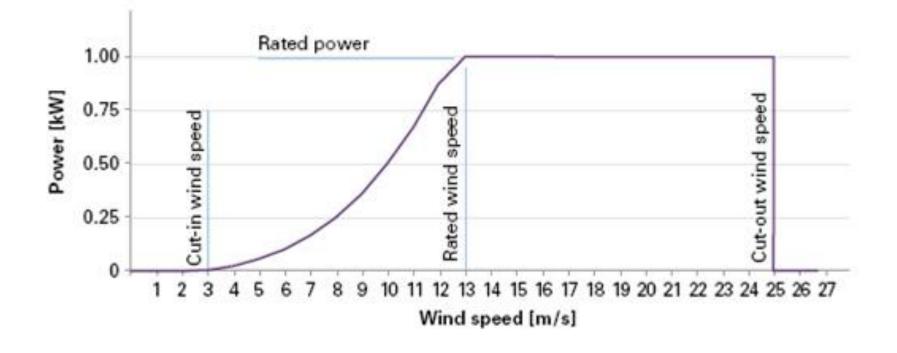
Individual Wind Turbines

- Most effective at a large scale
- Horizontal axis or vertical axis
- Small (domestic) scale or large wind farm scale (approx 1kW – 2.5MW)
- Building-mounted or free-standing
- Included in the Government's proposed Feed in Tariff – likely to benefit from considerably reduced payback periods under this scheme
- Potential planning issues
 - Noise
 - Visual appearance
 - Flicker
 - Topple distance

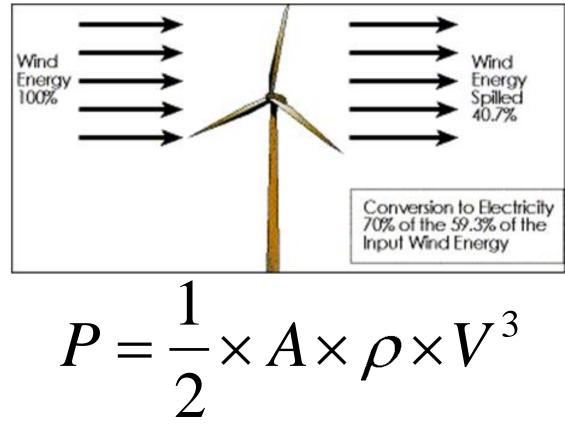


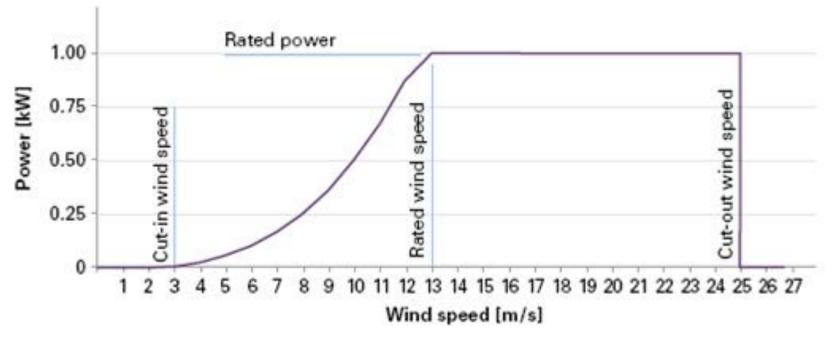



Key Components


- Wind turbine (blades, mast, gearbox, generator)
- Supporting structure

Wind as a resource





Betz limit

- Quantifies the amount of energy that can actually be taken "out of" the wind
- Betz limit: 59.3%
- Real-world maximum: 35-45%

Control at high wind speeds

- All turbines have a maximum wind speed (survival speed) at which they can operate to protect from damage and large wind loads on the structure
 - Stalling the blade
 - Pitch control
 - Yawing (turning)
 - Electrical braking
 - Mechanical braking

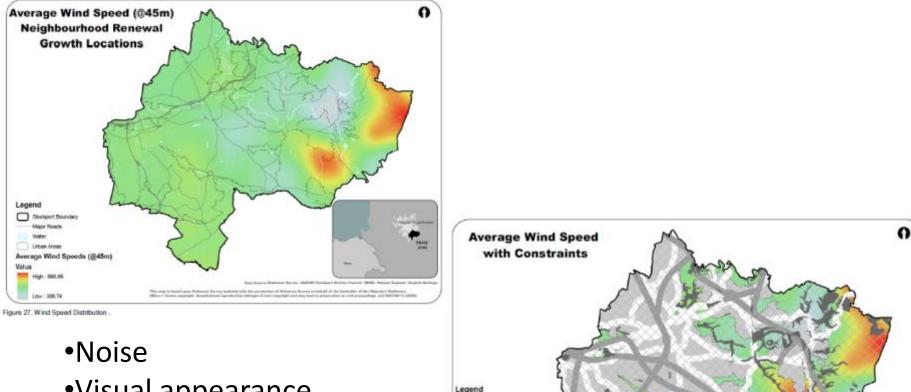
Design issues

- Average wind speeds
- Wind speed consistency (micro: >5m/s; large: >8m/s)
- *Rated* wind speed varies depending upon turbine size
- Laminar/turbulent flow/gusting
- Turbine type (horizontal/vertical axis)
- Proximity to electrical connection (and capacity available on the connection)
- Distance from surrounding buildings and infrastructure
- Maintenance access
- Cable routing
- Protection from damage
- Wind load on supporting structures

Types of wind turbine

- Horizontal axis
 - Requires rotor to be positioned into the wind and is therefore sensitive to changes in the wind direction and turbulence
 - Therefore require open areas with smooth laminar air flow and few obstacles
- Vertical axis
 - Developed for urban environments
 - Unaffected by changes in wind direction
 - Generally less efficient and therefore lower power output
 - Generally lower energy output
- Variation in number of blades
 - Low speed/high speed
 - Aesthetics
- Range of scales

Turby 2.5kW VAWT


Proven 6kW turbine, Kirklees Civic Centre

Choosing the right turbine

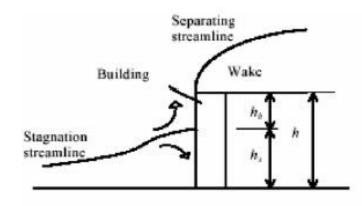
- Factors to consider:
 - Power output
 - Electrical connection available
 - Turbine position and scale building mounted or standalone
 - Rotor diameter
 - Weight
 - Noise
 - Visual characteristics
 - Performance (capacity factor)
 - Surrounding environment
 - Wind characteristics
- Accreditation
 - Clear skies expired end of 2009
 - MCS current certification scheme for registered installers and registered products

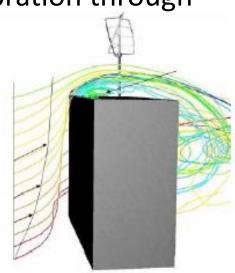
Choosing the right location

- •Visual appearance
- •Flicker
- Topple distance
- •Aircraft flight paths
- •Military bases

Major Road Constraint Urban/Residential Constraint Average Wind Speeds (@45m)

+ Civil Aviation Aerodrome Stockport Boundary

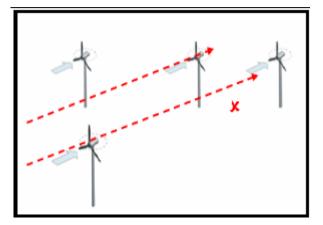

Environmental Constraint **Airport Consultation Zone**


Rail Constraint

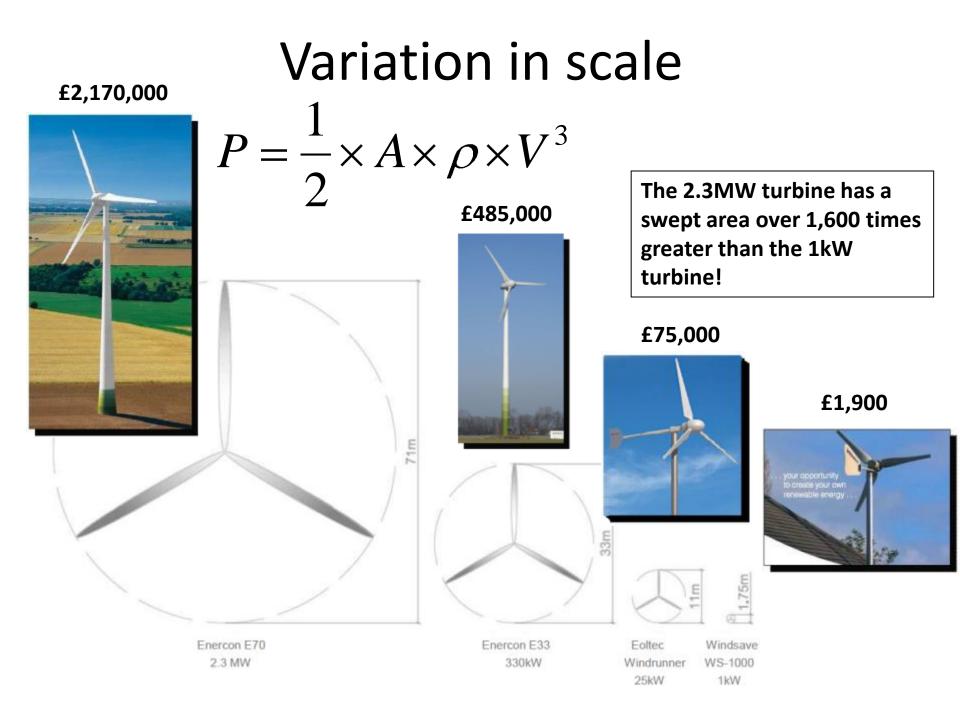
High

Power output & turbine positioning

- Power output and associated CO₂ emissions is likely to be insignificant in the context of most developments for turbines of less than 2.5kW. Multiple installations may be necessary to achieve a particular renewables target.
- Avoid areas of turbulence nearby to buildings, trees or severe landscaping features
- Minimise the effects of noise and vibration through considering mounting position



Turbine positioning – general principles


- Site annual mean wind speed should be >5m/s as a minimum (depends on height above ground and therefore hub height of turbine)
 - DECC wind speed database
 - Onsite wind monitoring
 - Consider future development that may change the surrounding area
- Exclusion areas:
 - Sites of historic interest (including ancient woodland)
 - Roads and rail lines
 - Built up area
 - Airports and airfields
 - Military areas and training grounds
 - 'Topple distance' typically tip height + 10%

Turbine positioning

- Turbines to be located on exposed faces (avoid shielding from surrounding buildings/landscaping etc.)
- Take measures to prevent shadow flicker and noise
- Ensure there is maintenance access to the turbine
- Cable routing from each turbine to grid connection

Avoid wind shading

Evance ISKRA R9000 (5kW)

- No. rotors: 3
- Blade diameter: 5.4m
- Blade material: Glass fibre reinforced composite
- Rated power: 5kW @ 12m/s
- Cut-out speed: N/A
- Survival speed: 60m/s
- Cut-in speed: 2.5m/s
- Pole height: 9-15m
- Typical annual energy generated: 9,012kWh (@ AMWS 5m/s)
- Annual carbon saved: approx 5 tonnes per annum
- Generator: Brushless direct drive permanent magnet generator
- Yaw control: passive tail vane and rotor
- System weight: approx 300kg excluding pole
- Noise level: 45dB @ 60m

SAHE

maximum maximum Interventi Brake syst dependen ElectroBra safety sys

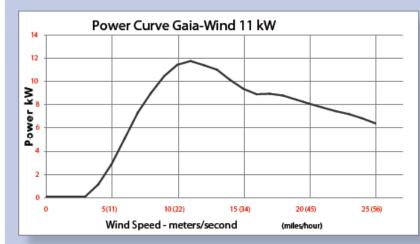
QUIET OPERATION

- System engineered for minimum noise generation
- Advanced blade design for low noise aerodynamics and balance
- Direct drive no gearbox noise

S year warrancy underplaned by more 2.5 million hours in the field

RELIABILITY

- Reactive Pltch[®] Is a simple and durable mechanical system
- ElectroBrake[®] has no moving parts
- Backed by manufacturer trained and certified service network
- Integrated generator eliminates complexity
- Existing installations average > 99% up time


Gaia Wind-133 (11kW)

- No. rotors: 2
- Blade diameter: 13m
- Blade material:
- Rated power: 11kW @9.5m/s
- Cut-out speed: 25m/s
- Survival speed: unavailable
- Cut-in speed: 3.5m/s
- Pole height: 18m
- Typical annual energy generated: 30,000kWh
- Annual carbon saved: 16 tonnes per annum
- Generator: 3-phase 400V connected to two stage gearbox
- Yaw control: unavailable
- System weight: 900kg (excl. tower)
- Noise level: 45dB @ 60m

Wind Speed (m/s)	Power kW
3	0.0
4	1.1
5	2.8
6	5.0
7	7.3
8	8.9
9	10.4
10	11.4

Proven 35-2 (12kW)

- No. rotors: 3
- Blade diameter: 8.5m
- Blade material: unavailable
- Rated power: 12.1kW
- Cut-out speed: N/A
- Survival speed: 54m/s
- Cut-in speed: 3.5m/s
- Pole height: 15-20m
- Typical annual energy generated: 23,200kWh (@5m AMWS)
- Annual carbon saved: 13 tonnes per annum
- Generator: Direct drive with permanent magnet
- Yaw control: self-regulating rotor
- System weight: unavailable
- Noise level: unavailable

It's not all plain sailing...

Furniture Matters: Proven 15kW

- Clear Skies funding approved Dec 05
- Planning permission received Oct 06
- Turbine withdrawn for technical reasons
- Grid connection: additional costs and delays
- Funding deadlines: new sources found
- Turbine installed March 2009: technical problems
- Turbine head taken away for 9 months
- Re-installed Oct 2010: limited running time
- Due to be fully operational March 2011
- Output slightly above predictions: expecting 34,000 kWh/year when fully running

Performance characteristics

- Typical capital costs: £1,000-£3,000/kW
- Typical energy output: 400-2,500 kWh/kW_{peak}
 Utilisation/load factor typically 5% 30%
- Typical system size: 1kW 3MW
 Small-medium scale: 5-100kW (5m 25m blade diameter)
- Typical payback period: 10-50 years
 - FiT intended to provide approx 18 yr payback for suitable sites
 - Depends largely on site suitability and energy yield
 - Large scale lower, micro scale higher

FiT for Wind

	Scale	Tariff level for new installations in period (p/kWh) [NB tariffs will be inflated annually]									Tariff lifetime		
Technology	Scheme Year	1 1/4/10 – 31/3/11	2 to 31/3/12	3 to 31/3/13	4 to 31/3/14	5 to 31/3/15	6 to 31/3/16	7 to 31/3/17	8 to 31/3/18	9 to 31/3/19	10 to 31/3/20	11 to 31/3/21	(years)
Wind	≤1.5kW	34.5	34.5	32.6	30.8	29.1	27.5	26.0	24.6	23.2	21.9	20.7	20
Wind	>1.5-15kW	26.7	26.7	25.5	24.3	23.2	22.2	21.2	20.2	19.3	18.4	17.6	20
Wind	>15-100kW	24.1	24.1	23.0	21.9	20.9	20.0	19.1	18.2	17.4	16.6	15.9	20
Wind	>100-500kW	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	20
Wind	>500kW-1.5MW	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	20
Wind	>1.5MW-5MW	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	20

Financial analysis

- Key financial sensitivities:
 - Feed in Tariff (FiT)
 - Electricity price
 - Electricity offset tariff
 - Generation and demand alignment (time of day of usage)
 - Existing wiring and structural configuration additional infrastructure required?
 - Structural modifications required

Example – "Agricultural-scale" wind turbine installation

System type and size:	25	kW
Total system capital cost:	£75,000	
Typical utilisation factor:	10%	
Annual energy generated:	21,900	kWh
Annual carbon saved:	12,439	kgCO2
Annual carbon saved in context:	Offset all car emissions from 4 new hous	approx
Feed in Tariff rate:	24.1	p/kWh
Annual payments received from Feed in Tariff:	£5,278	
Assumed elec offset:	25%	
Assumed elec export:	75%	
Assumed elec purchased cost:	12	p/kWh
Assumed elec export price:	3	p/kWh
Annual savings made from electricity offset:	£657	
Annual payments received from grid export:	£493	
Annual maintenance cost:	£125	
Total net annual savings:	£6,303	
Simple payback period:	11.9	years

Now assume it's poorly positioned...

System type and size:	25 kW
Total system capital cost:	£75,000
Typical utilisation factor:	3%
Annual energy generated:	6,570 kWh
Annual carbon saved:	3,732 kgCO2
Annual carbon saved in context:	Offset all carbon emissions from approx 4 new houses
Feed in Tariff rate:	24.1 p/kWh
Annual payments received from Feed in Tariff:	£1,583)
Assumed elec offset:	25%
Assumed elec export:	75%
Assumed elec purchased cost:	12 p/kWh
Assumed elec export price:	3 p/kWh
Annual savings made from electricity offset:	£197
Annual payments received from grid export:	£148
Annual maintenance cost:	<u>6425</u>
Total net annual savings:	£1,803
Simple payback period:	41.6 years

Examples

Six word summary

Size matters...

... and so does position

Questions?

Break

Delivered by:

