

Gas CHP

Tim Kay **AECOM**

Delivered by:

Gas CHP overview

- Technical aspects
- Financial aspects
- Planning considerations
- Case study

Combined Heat and Power (CHP)

- Generates electricity while utilising 'waste' heat from the process
- Effective where electricity cost is much higher than gas cost
- Relies upon assumed high CO₂ burden from grid-supplied electricity
- Benefits from reduced distribution losses
- Scalable from 5kW + but efficiency affected at smaller outputs

CHP system fuel 100 units

Heat

50 units

Electricity 30 units

Key Components

- CHP engine
- Heat recovery (water jacket and exhaust recovery)
- Inverter
- Electrical export meter
- Suitable electrical connection
- Top-up boilers

Design issues

- Base load size and consistency
- Daily and seasonal demand patterns
- Thermal storage
- System size and effect on electrical efficiency
- Noise and vibration damping
- Design for thermal
- Design for electrical
- "Spark gap"
- Efficiency related to system size

Thermal storage

Thermal storage

Thermal storage

Potential applications

- Most effective with smooth base load demand, e.g.
- Sports centres
- Large public buildings
- NHS sites
- Heat networks
- Anywhere with sufficient demand and effective use of thermal storage to smooth peaks in demand

Performance characteristics

- Typical capital costs:
 - £500-£1,500/kW_{th}
- Typical system efficiencies:
 - Electric efficiency: 24% 45%
 - Thermal efficiency: 35% 55%
- Typical system size: 5kW_{elec} 500kW_{elec} +
- Key financial sensitivities:
 - Utilisation 5,000 run hours per year is rule of thumb
 - "Spark gap"
 - Elec offset cost
 - FiT: Micro CHP pilot (<2kW) 10p/kWh elec
 - Quantity of elec offset against purchased
 - Local electrical infrastructure capacity
 - Typical payback: 5-50 years!

Planning considerations

- Located within plant room or part of decentralised system?
- Flue height and location
- Location of CHP unit in relation to other buildings
- Noise hum of engine
- Electrical infrastructure capacity
 - Is the CHP unit intended to feed electricity directly into the building or will surplus be exported?
 - Can local infrastructure support the installation without reinforcement?
 - Will the DNO grant permission for connection to the grid?

Question:

What is the carbon burden of 1 unit of heat produced from this system?

Example – gas CHP installation

Value of energy generated by Dachs	kW	hrs	£/kWh	2
Electricity	5-5	5,400	0.10	2,910
Heat	12.5	5,400	0.04	3,960
Total				6,870
Costs	kW	hrs	£/kWh	2
Gas costs	22.8	5,400	0.03	4,309
Service	5-5	5,400	0.01	445
Total				4,754
Savings				2,116

- Potentially 7 year payback
- Relies upon offsetting purchased electricity
- Must be sized to maximise run time

Questions?

Delivered by:

Gas CHP Exercise: CO_2 calculation

Delivered by:

Exercise

- What is the carbon burden of a unit of heat for a CHP unit with the following parameters?
 - Fuel input: 200kW
 - Electrical output: 54kW
 - Thermal output: 108kW
- How much carbon would be associated with this system delivering 540,000kWh of heat over a year?
- How much carbon could this system save in comparison to a 90% efficient gas-fired boiler in delivering this heat

Carbon burden of gas = 0.198 kgCO₂/kWh

Carbon burden of grid displaced electricity = $0.529 \text{ kgCO}_2/\text{kWh}$